Smooth partitions of unity on some non-separable Banach spaces
نویسندگان
چکیده
منابع مشابه
Smooth Functions and Partitions of Unity on Certain Banach Spaces
In an earlier paper [4], the author sketched a method, based on the use of “Talagrand operators”, for defining infinitely differentiable equivalent norms on the spaces C0(L) for certain locally compact, scattered spaces L. A special case of this result was that a C renorming exists on C0(L) for every countable locally compact L. Recently, Hájek [3] extended this result by showing that a real no...
متن کاملEvolution inclusions in non separable Banach spaces
We study a Cauchy problem for non-convex valued evolution inclusions in non separable Banach spaces under Filippov type assumptions. We establish existence and relaxation theorems.
متن کاملNon - separable Banach spaces with non - meager Hamel basis
We show that an infinite-dimensional complete linear space X has: • a dense hereditarily Baire Hamel basis if |X| ≤ c; • a dense non-meager Hamel basis if |X| = κ = 2 for some cardinal κ. According to Corollary 3.4 of [BDHMP] each infinite-dimensional separable Banach space X has a non-meager Hamel basis. This is a special case of Theorem3.3 of [BDHMP], asserting that an infinite-dimensional Ba...
متن کاملLfc Bumps on Separable Banach Spaces
In this note we construct a C∞-smooth, LFC (Locally depending on Finitely many Coordinates) bump function, in every separable Banach space admitting a continuous, LFC bump function.
متن کاملOn the range of the derivative of Gâteaux-smooth functions on separable Banach spaces
We prove that there exists a Lipschitz function from l into IR which is Gâteaux-differentiable at every point and such that for every x, y ∈ l, the norm of f (x) − f (y) is bigger than 1. On the other hand, for every Lipschitz and Gâteaux-differentiable function from an arbitrary Banach space X into IR and for every ε > 0, there always exists two points x, y ∈ X such that ‖f (x)−f (y)‖ is less ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1973
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-46-1-43-51